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Abstract. The time dependent wave equation for a conformally coupled massless scalar 
field in a de Sitter universe is examined. It is pointed out that the exact solutions of the 
radial equation valid over the 'whole range' can be found-unlike the corresponding 
situation in the Schwarzschild spacetime. The power spectrum of Hawking radiation is 
evaluated after calculating the absorption probability at the horizon. The solution is seen 
to be well behaved at the origin. 

1. Introduction 

The possibility of thermal emission from black holes due to quantum effects was 
pointed out by Hawking (1974) and has attracted widespread attention. The thermal 
emission is linked to the existence of an event horizon. The possibility of such thermal 
emission in other systems with event horizons immediately suggests itself. This is 
indeed seen to be the case for the de Sitter universe with cosmological event horizon 
which has thermal radiation associated with itself (Gibbons and Hawking 1977). One 
is thus motivated to study various fields in de Sitter universe. 

In this paper we give expressions for the thermal power emitted by the de Sitter 
universe with conformally coupled massless scalar field. The thermal character of the 
radiation and the equivalent temperature have been given by Gibbons and Hawking 
(1977) using quantum Green functions. Our problem reduces essentially to the 
calculation of the probability of absorption by the horizon of waves incident upon it. 
This is done following the procedure of Page (1976) and Teukolsky (1973) and 
involves essentially solving the classical wave equation in the de Sitter metric. 

We find in 9: 2 exact solutions to the wave equation that are valid throughout the 
region OS r C a where a is the radius of the de Sitter horizon. This is in contrast to the 
corresponding situation in the Kerr-Newman background or even the Schwarzchild 
background where no exact solution is known to be valid over the whole range of 
radial coordinates (Rowan and Stephenson 1977). 

In ii 3 we briefly review Kruskal coordinates and the arguments leading to a 
temperature kBT = 1/(27ra) for the horizon. The energy spectrum is given in 9: 4 after 
calculating the absorption probability. This is done by picking the solution of the 
scalar wave equation satisfying the outgoing boundary condition at the horizon and 
identifying its ingoing and outgoing parts away from the horizon (0 < r < a).  The ratio 
of the ingoing to the outgoing part gives 'us the reflection amptitude which in turn 
enables us to calculate the absorption probability. 
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In 0 5 we satisfy ourselves that the behaviour of the amplitudes at the origin (r = 0) 
is regular and also notice some differences from the black hole case. 

2. The radial equation and its solution 

We start with the equation 

U@ = aR@, 
The metric being considered is written in the form 

ds2 = - (1-r2/a2)dt2+(1 -r2/a2)-’  dr2+r2(de2+sin2 8 dq52) (2.2) 

where the radius of the de Sitter horizon, a, is related to the cosmological constant A 
and the curvature scalar, R, by 

R = 4 A =  12/a2. (2.3) 

Using 

we obtain 

where L2 is the flat-space angular-momentum operator. This equation can be 
separated by writing 

The function f r ( r )  can be easily seen to satisfy the radial equation (with z = a / r )  

This equation is just the associated Legendre equation that has known solutions valid 
over the range in which we are interested, i.e. 1z1>1. In terms of the standard 
hypergeometric functions (Abramowitz and Stegun 1970) the solutions are 

f r 1 )  = e-T5w2-1-1 T-1’2r(i+ 1 +iaw)(r/a>‘+’(l -r2/a2)iao’2 

r2 )  ( 2  2 2 2  2 2 ’ a  
I iaw 1 I iaw 

X 2 F 1  1 +-+-, -+-+--; I + - - .  7 

and 

( 2 . 7 ~ )  

(2.7b) 



Massless scalar field in a de Sitter universe 1965 

Defining a ‘tortoise’ coordinate r * ,  by 

a a + r  
(1 - r 2 / a 2 ) ’  r - 2  a - r  

dr* = dr  * - - In( -) 
the solutions for equation (2.6) are expected to behave as exp(*iwr*) near r = a. That 
this is indeed the case can easily be seen from equation (2.7) which shows that fl” and 
f i 2 )  approach exp(-iwr*) and exp(+ior*) respectively. Thus f i l )  and fi” represent 
incoming and outgoing solutions respectively at the de Sitter horizon. 

3. Kruskal coordinates and Hawking temperature 

For discussing the boundary conditions on the horizon, it is convenient to define 
(Gibbons and Hawking 1977) Kruskal type coordinates U and V with 

r = a(1 + U V ) ( I  - UV)-’ exp(2t/a)= -VU-’. (3.1) 

v = -j=euia and U = F ~ - ” ~  (3.2) 

In terms of u = t - r *  and v = t + r *  we have 

where upper and lower signs refer to first and second exterior regions respectively. 
The Gibbons-Hawking vacuum is defined by functions which are positive 

frequency with respect to the Kruskal coordinate U but which are mixtures of positive 
and negative frequency with respect to coordinate t (or U and U ) .  As exp(-iwU) is 
analytic in the lower half U-plane i t  is readily seen (Unruh 1976) that the suitably 
normalised combination 

(3.3) 

is also analytic in the lower half U-plane. Here U‘ and U” are non-vanishing for 
U < 0 and U > 0 respectively. U < 0 refers to the normal or first exterior region while 
U > 0 refers to the second exterior region and is negative frequency in coordinate t. On 
second quantising the field @ we can expand it in the U-basis or t-basis. As is well 
known a vacuum with respect to the U-basis may contain particles with respect to the 
t-basis. The relation between the two bases gives us the relations between the cor- 
responding creation and destruction operators. 

Writing hi, f i  and gi for functions which are positive frequency with respect to U, t 
and V respectively we can expand @ as (Hawking 1974) 

@ = E  I (a i f i+a t f ;+c ig i+c:g i )  (3.4) 

or 

If 
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then 

and 

ai = (aiibi + pijbf). (3.8) 
i 

If the detector is sensitive to fi (positive frequency with respect to t )  it measures 
(a’ai). If the initial vacuum is defined by 

bj 10) = 0. (3.9) 

We have using equation (3.8) 

(OIaTaiP) = IPijI’. 
i 

From equation (3.3) we have 

which corresponds to a Bose gas with temperature T given by 

ksT = l/(.rra). 

On the right-hand side of equation (3.3) we have taken 

PW, f ( w  )&Id (as also for aww,). 

4. Boundary condition at the horizon and the energy spectrum 

The power emitted is given by 

(3.10) 

(3.11) 

(3.12) 

analogous to black-hole formula (Hawking 1974, Page 1976) where r , ( w )  is the 
probability of absorption of a wave incident on the horizon. 

In calculating l7l the solution of interest at the horizon is the outgoing wave, i.e. 
exp(+iwr*). ’This also follows from the fact that we have exp(-iwV) at the future 
horizon which is a function of U = t - r* only. This boundary condition is satisfied by 
the solution fl’(r) given in equation (2.7b). 

The main part of the calculation of the spectrum is the evaluation of r, the 
transmission coefficient. We follow a method analogous to that of Page (1976). The 
solution to the radial equation for r<< a is given (we take 21 non-integral for con- 
venience (Abramowitz and Stegun 1970)) 

f r  = ~1 e+iorri+llF1(l+ 1,21+2; -2iwr)+c2 e+iWrr-ilF1(-i, -21; -2iwr) (4.2). 

The constants C1 and CZ are evaluated by matching equation (4.1) with the general 
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solution flz' (equation 2.7b)  for all modes. We get 

The asymptotic forms of the confluent hypergeometric functions, lF1, can now be used 
to get the solution in the form 

- yin e-iwr + y out eiwr 

forwr>>l  ( r < a )  

The reflection coefficient R is 

giving 
4 A  (UU)* '  where A = 

(1 +A)2' n: [ n + (aw)2] * 
r =  (4.4) 

The power spectra will be given by equation (4.1). 

5. Discussion 

The behaviour of the solution fl', used in calculating r [ ( w ) ,  near the origin r = 0 is of 
some interest. We notice from equations (4.2) and (4.3) that 

- 1  fl' = C1r'+l + ~ 2 r  + CZ 

The function does not satisfy the requirement that it should vanish as r + O .  This is 
however not relevant for the following reason. 

The field at r = 0 at any finite time is obtained from the boundary condition on the 
past horizon which is of the form exp(iwU) and is hence a function of v = r + r* only. 
This leads to the form exp(-iwr*) for the spatial part which is seen to correspond to 
fi'' which behaves like rf+' and vanishes as r + O .  Hence the appropriate solution is 
well behaved at the origin. 

We notice from equation (4.4) that for 1 = 0, I-'(@)- ( a ~ ) ~ '  and approaches unity. 
This is in contrast to the black-hole case where r l ( w ) - ( a w ) 2 ' + ' .  The difference in 
behaviour is probably due to the difference in effective potential barriers that exist in 
the case of the de Sitter horizon as compared to the black hole. 

as r + 0. 
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